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MOTIVATIONAL EXAMPLE: CREDIT CARD FRAUD DETECTION
PREDICTION

Credit Card Fraud Detection
Using Bayesian and Neural Networks

Sam Maes Karl Tuyls Bram Vanschoenwinkel
Bernard Manderick
Vrije Universiteit Brussel - Department of Computer Science
Computational Modeling Lab (COMO)
Pleinlaan 2
B-1050 Brussel, Belgium

{sammaes@ ktuyls@ bvschoen@, bernard@arti. }vub.ac.be

A bstract

This paper discusses automated credit card fraud de-
tection by means of machine learning. In an era

of digitalization, credit card fraud detection is of

great importance to financial institutions. We apply
two machine learning techniques suited for reason-
ing under uncertainty: artificial neural networks and

do the fraud detection. After a process of learning,
the program is supposed to be able to correctly clas-
sify a transaction it has never seen before as fraud-
ulent or not fraudulent. given some features of that
transaction.

The structure of this paper is as follows: first we
introduce the reader to the domain of credit card
fraud detection. In Sections 3 and 4 we briefly ex-
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MOTIVATIONAL EXAMPLE: CREDIT CARD FRAUD DETECTION
PREDICTION

Credit Card Fraud Detection
Using Bayesian and Neural Networks

Qam Maac Karl Thvle Rram Vancechnenwinkel
experiment | +10% false pos | £15% false pos |
\ ANN-fig 2(a) | 60% true pos 70% true pos
ANN-fig 2(a) | 47% true pos 58% true pos
ANN-fig 2(c) | 60% true pos 70% true pos
BBN-fig 2(c) | 68% truc pos 74% truc pos
BBN-fig 2(g) | 68% true pos 74% true pos
Abstract rocess of learning,

. . ® to correctly clas-
This paper discusses. 1able 1: This table compares the results achieved |, ctore as frand-

tection by means of with ANN and BBN, for a false positive rate of re- \e features of that
of dlgllt.a.hzatlon, CI¢ spectively 10% and 15%. |
great importance to s follows: first we
two machine learnin™vee . . — ™ , in of credit card
ing under uncertainty: artificial neural networks and fraud detection. In Sections 3 and 4 we briefly ex-
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MOTIVATIONAL EXAMPLE: VETERINARY EPIDEMIOLOGY
DATA VISUALISATION

Contents lists available at SciVerse ScienceDirect

Preventive Veterinary Medicine

| SFVIER journal homepage: www.elsevier.com/locate/prevetmed

Using Bayesian networks to explore the role of weather as a
potential determinant of disease in pigs

|
~

B.J.J. McCormick?, M.]. Sanchez-Vazquez®, F.I. Lewis

* Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
b OIE Organisation Mondiale de la Santé Animale, 12, rue de Prony, 75017 Paris, France
¢ Section of Epidemiology, University of Zurich, Zurich, Switzerland
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MOTIVATIONAL EXAMPLE: SOCIAL SCIENCES
DATA INTERPRETATION

Discovering complex interrelationships between
socioeconomic status and health in Europe: A case study
applying Bayesian Networks

Javier Alvarez-Galvez " *

* Loyola University Andalusia, Department of International Studies, Campus de Palmas Altas, Faculty of Political Sciences and Law, Seville
41014, Spain

b Complutense University of Madrid, Department of Sociology IV (Research Methodology and Communication Theory), Campus de
Somosaguas, Faculty of Political '

l Eastern wellare regime '

Description of the variables:

1. GNDR: Gender (O« male; 1«female).

2. AGE: Age of respondent.

3. INSIDER: Insiderness (Owoutsider; 1winsider)

4. ISEL International Socio-Economic Index of cccupational status.
5. EDUYRS: Years of education.

6. INCOME: Mousehold total net income.

7. DISCRIM: Self-Perceived Discrimination (SPD) (1=discrim.).

8. HEALTH: Seif-Rated Health (SRM).

Networks score goodness of fit (log marginal likelihood):
Uberal welfare-state (N=16.591): -90117.89
Socal-Democratic-welfare state (N=29,120): -192477 .4
Conservative welfare-state (N=58,184); 3191762

Southemn welare-state (N=37.247): -136176.5

Eastern wellare-state (N=43 846): -135422.5

l Social-Democratic wellare regime ' | Southem wellare regime l R ————————

Fig. 1. Bayesian networks describing interrelationships between SES and health in five European welfare states.
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BAYESIAN NETWORKS IN THE MACHINE LEARNING WORLD
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OUTLINE OF THE TALK
Objectif of the talk:

How to learn from observational data?
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Objectif of the talk:
select

How to tearn Bayesian networks from observational data?

Bayesian Networks are defined by two elements:

Network structure:

Directed Acyclic Graph (DAG): G = (V, A)

in which each node vi € V corresponds to a random variable Xi
Probability distribution:

Probability distribution X with parameters ©, which can be factorised into smaller
local probability distributions according to the arcs aij € A present in the graph.

A BN encodes the factorisation of the joint distribution

n

P(X) = H P(X, | Pa;,©;), where Pa; is the set of parents of X,
=1
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OUTLINE OF THE TALK

Objectif of the talk:
Howto-learn- trom-observational-data?
Which approaches do exist?

Which assumptions/limitations are involved when learning a Bayesian network form
observational dataset?

Theoretical limitations:
» BN learning is ill-posed on two levels
» Finite sample (any stats problem is ill-posed)

» Complete knowledge of observational distribution usually does not
determine the underlying causal model
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OUTLINE OF THE TALK
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Objectif of the talk:
Howto-learn- trom-observational-data?
Which approaches do exist?

Which assumptions/limitations are involved when learning a Bayesian network form
observational dataset?

Technical limitations:

» Approximate learning process
» Proxies

» Combinatorial wall!!l

» Simplification needed
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COMBINATORIAL WALL i

Typical

# Nodes # DAGs Inference domain of interest

1-15 Nodes < 1041 DAGs Exact inference

16 - 25 Nodes < 10100 DAGs Exact inference possible =

26 - 50 Nodes < 10400 DAGs Approximate inference

51-100 Nodes < 10'"700DAGs  Approximate inference

PROTEOMICS

101 - 1000 Nodes < 10100000 DAGs (very) approximative inference

Approximations:

> limiting number of parents per node
» Decomposable scores/efficient algorithm
» Score equivalence
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PLAN

1. From observationnal dataset deduce probabilistic model
- Usually discrete BN or jointly Gaussian

- Epidemiological constrain: mixture of distributions

2. From probabilistic model deduce structure

Observational dataset Probabilistic model Network structure
X1 X2 X3 ... P(X17 o Xn) —
12 23 53 ...
Sy PN
32 31 23 ... / \
10 16 45 ...
Independance Computing directly

testing



SOME ELEMENTS OF PROBABILITY THEORY

The conditional probability of A given B is:

P(B

Bayes theorem: P(A | B) —

| A)P(A)
P(B)

Let A, B and C non intersecting subsets of nodes in a DAG G

Ais conditionally independentof BgivenCif: A | p B|C

P(A,B|C)=P(A|C)P(B|O)
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ELEMENT OF GRAPH THEORY <>

Let A, B and C non intersecting subsets of nodes in a DAG G

A is conditionally independent of B given C if: Al p B|O

P(A,B|C)=PA|C)P(B|C)

AL p B|C Al p B|C

* ® Q\\‘///G
G
G
G

©



LEARNING BAYESIAN NETWORKS
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» In a practical perspective, for observational data, if learning algorithms rely on
probabilistic learning algorithm. Then one can learn up to the Markov

equivalence class.

» Markov equivalence class are the set of DAGs that have the same skeleton and

v-structure.

)
(m)
,
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ELEMENT OF GRAPH THEORY: MARKOV BLANKET =

The Markov Blanket of a node is the set of parents, co-parents and children.

Parents

® Co-Parents

Children

The Markov Blanket of a node is the set of nodes that shields the index node from the
rest of the network

Local Markov property:

X 1 Non-Descendants(X) |Pa(X)
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LEARNING BAYESIAN NETWORKS

Model selection Parameter estimation

P(M|D) = P(Om,SD) = P(OM|S,D) - P(SD)

model learning parameter learning structure learning



LEARNING BAYESIAN NETWORKS

Constraint based algorithms

Pxiy|z <«

X1lsY|Z=X_L1Y|Z

2\ /

\

/
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Search-and-score algorithms

Maximum a posteriori score

G* = argmax f(D,G,n,...)
G

Example of scoring functions:

» Bayesian or ML scores
» Bayesian Posterior
» Bayesian-Dirichlet (BDeu,BDs,BDe)

» Bayesian Information Criterion (BIC)
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LEARNING BAYESIAN NETWORKS -
Score-and-search algorithms

» Heuristic approaches / Greedy search

v

Hill-climbing (with possibly random restarts/stochastics ... )
» Tabu search (Glover, 1986)

» Simulated annealing (Kirkpatrick et al, 1983)
4

Constrain

Plus an entire zoo of methods ...
» Exact search
» Exact node ordering (Koivisto et al., 2004)
» Learning with cutting planes (Cussens, 2012)

Scores
» Decomposability!
» Discrete BNs:
» Bayesian-Dirichlet: BDeu (Heckerman et al. ,1995)
» Score equivalence for additive regression framework:
» Bayesian based scores: not always score equivalent due to the prior!

» Information theoretic scores: BIC asymptotically score equivalent
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ABN STRUCTURE LEARNING

Search and score algorithm

Structures  glm AIC/BIC

Exact or heuristic search A ’
z score 1
< B
® z

Bayesian network with
highest posterior
probability

=
“3 e score 2 o JEO Q ®
‘:;& e score 3 Qﬂ “Q

=

score 4
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ABN STRUCTURE/PARAMETER LEARNING

Search and score algorithm

Structures  glm AIC/BIC

: Exact or heuristic search A ’
score 1
< °®
® z

Bayesian network with
highest posterior
probability

score 4

=
“3 e score 2 o JEO Q ®
‘:;& e score 3 Qﬂ “Q

= =

Parameter estimation -’\
» compute marginal posterior density A "

» regression estimate
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ABN STRUCTURE/PARAMETER LEARNING

=

Search and score algorithm

Structures  glm AIC/BIC

’

Exact or heuristic search A
z — score 1
. g o0®
é% e score 2 (o] Qgﬁ z
o
‘?& s score 3 cc o ‘
o Causality! Bayesian network with
oo - Score & ‘\ . highest posterior
Ban/Retain e
probability
structures
Parameter estimation Using R

» compute marginal posterior density

» regression estimate

buildscorecache()

mostprobable()

fitabn()
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CAUSAL THINKING VERSUS ACAUSAL THINKING =

» Strong assumptions ... but common in statistics, no?

» “It seems that if conditional independence judgements are byproducts of
stored causal relationships, then tapping and representing those relationships
directly would be a more natural and more reliable way of expressing what we
know or believe about the world. This is indeed the philosophy behind causal
Bayesian networks.” (Pearl, 2009)

» The do-calculus
» Interventions
» In epidemiology: Randomised Controlled Trial

» So ... BN is a nice framework to treat causal and acausal thinking
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R CODE: SOFTWARE IMPLEMENTATION =

Popular R packages (available on CRAN)
bnlearn
» Learning via constraint-based and score-based algorithms (many!)
pcalg
» Robust estimation of CPDAG via the PC-Algorithm
deal
» Learning BNs with mixed (discrete and continuous) variables
catnet
» Discrete BNs using likelihood-based criteria
abn
Learning BNs with mixed (discrete, continuous, Poisson) variables
Score based methods: Bayesian and frequentist estimation
Exact and heuristic search

vV v VvV Vv

Link strength

Disclaimer: | am author and maintainer of the abn R package. | will use it for the example part.
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VARRANK

System epidemiology

» Typically the set of possible variables is formidable
> The classical approach for variable selection is based on prior scientific knowledge (29%)’
» Change of estimate (18%)’
> Stepwise model selection (16%)"
No prior model?

Not one outcome experiment?

varrank Variable ranking for better time allocation

» Variable ranking based on a set of variable of importance
» Model free. Based on information theory metrics

» Mixture of variables (continuous and discrete). Discretisation through rule/clustering

https://CRAN.R-project.orqg/package=varrank " Walter et al (2009)




VARRANK MAXIMUM RELEVANCE MINIMUM REDUNDANCY
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fi candidate feature to be ranked

C set of variables of importance H(X) = 3 Pla,) log Plr,)

S set of already selected variables

Difference (mid) or
quotient (miq)

Greedy search

Forward - argmax

Estévez and al. (2009)

Discretization

score; = MI(f;; C) — ﬁza(fi, fss C)MI(fi; fs)

e i e

Relevance Normalization Redundancy

B =1/|S|and a(f;, fs, C

Average amount

of information of
one RV

Mutual dependence
between two RV

Backward - argmax

1

~ min(H(f,), H(fs))
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R CODE: EXAMPLE ASIA = SYNTHETIC DATASET o
Proposed by Lauritzen et al., 1988 and provided by Scutari, 2009

“Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis,
or none of them, or more than one of them. A recent visit to Asia increases the chances
of tuberculosis, while smoking is known to be a risk factor for both lung cancer and
bronchitis. The results of a single chest X-ray do not discriminate between lung cancer
and tuberculosis, as neither does the presence or absence of dyspnoea.”

https://CRAN.R-project.org/package=abn
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R CODE: EXAMPLE ASIA
Proposed by Lauritzen et al., 1988 and provided by Scutari, 2009

“Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis,
or none of them, or more than one of them. A recent visit to Asia increases the chances
of tuberculosis, while smoking is known to be a risk factor for both lung cancer and
bronchitis. The results of a single chest X-ray do not discriminate between lung cancer
and tuberculosis, as neither does the presence or absence of dyspnoea.”

##defining distributions

dist = list(Asia = "binomial”, ASia SmOking

Smoking = "binomial”,
Tuberculogis = "binomial”™,

LungCancer = "binomial",

Bronchitis = "binomial",

Either = "binomial”, Tuberculosis LungCancer

XRay = "binomial",

Dyspnea = "binomial”)

#olot BN Bronchitis

plotacn(dag.m = ~Agia|Tuberculosis +
Tuberculosis|Either +
Either | XRay:Dyspnea +
smoking|Bronchitis:LungCancer + E |t nNer

LungCancer |Either +
Bronchitis|Dyspnea,
data.dists = dist,

" "

edgedir = "cp",

fontegize.node = 30, XRay DySpnea

edge.arrowwise = 3)




ASIA: SCORE BASED ALGORITHM

#loglikelihood score

bsc.compute <- buildscorecache(data.df = asia,
data.dists = dist,
max.parents = 2)

dag <- mostprobable(score.cache = bsc.compute)

plotabn(dag.m = dag,data.dists = dist, fontsize.node

Asia| |Tuberculosis| |LungCancer

Vo

Either, | Smoking

v !

XRay Bronchitis

/

Dyspnea

30, edge.arrowwise

3)

£7HH™) University of
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ASIA: SCORE BASED ALGORITHM

#loglikelihood score

bsc.compute <- buildscorecache(data.df = asia,
data.dists = dist,
max.parents = 2)

dag <- mostprobable(score.cache = bsc.compute)

plotabn(dag.m = dag,data.dists = dist, fontsize.node = 30, edge.arrowwise = 3)

Learned Truth

Asia |Tuberculosis |LungCancer Asia Smoking

v ) U /

Either]  |Smoking Tuberculosis| |LungCancer

¢ $ Bronchitis

XRay Bronchitis Either
/ AN

Dyspnea XRay Dyspnea
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ASIA: SCORE BASED ALGORITHM
> compareDag(ref = t(dag.adj),
+ test = dag)
STPR
[1] 0.75
#loglikelihood score
bsc.compute <- buildscorecache(data.df = asia, $FPR
data.dists = dist, [1] 0.01785714
max.parents = 2)
$Accuracy

dag <- mostprobable(score.cache = bsc.compute) [1] 0.953125

plotabn(dag.m = dag,data.dists = dist, fontsize.node = 30, edge.arrc
SFDR

[1] 0.2857143

Learned

$"G-measure”

M Asia [1] 0.8017837
SV éf//// i/ \b k{/ $ “Fl-score"

Tuberculosis [1] 44.8

$PPV

¢ ¢ \ [1] 0.8571429
XR >

e, l

XRay| Dyspnea T;I;Iaz:;uning-distance‘




ASIA: HOW MANY PARENT ARE NEEDED?

% of max score

1.000 -

0.995-

0.990 -

0.985 -

Scoring in function of the number of children

1 2 3
# of parent per node

variable
AIC

—o— BIC
MDL

™) University of
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ASIA: EXTERNAL KNOWLEDGE

##recent visit to Asia increases risk of tuberculosis

bsc.compute <- buildscorecache.mle(data.df = asia,
data.dists = dist,

max.parents = 2,

dag.retained = ~Tuberculosis|Asia)

dag <- mostprobable(score.cache = bsc.compute,score = "bic")
plotabn(dag.m = dag,data.dists = dist, fontsize.node = 30, edge.arrowwise

Bronchitis

v

Asia Smoking
WV W

Tuberculosis| lLungCancer
\ \/

Either

\/ \

XRay| Dyspnea
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ASIA: EXTERNAL KNOWLEDGE

> compareDag(ref = t(dag.adj),
+ test = (dag))
STPR

[1] 0.875
##recent visit to Asia increases risk of tuberculosis

bsc.compute <- buildscorecache.mle(data.df = asia, $FPR
data.dists = dist, [1] 0.01785714
max.parents = 2,
dag.retained = ~Tuberculosis|Asia) S$Accuracy
[1] 0.96875

dag <- mostprobable(score.cache = bsc.compute,score = "bic")
plotabn(dag.m = dag,data.dists = dist, fontsize.node = 30, edge.arroyv $SFDR

[1] 0.125
Learned

Bronchitis $°G-measure’
V lﬂgﬁi Iiiiliiﬂl [1] 0.875
w / $ " Fl-score”
Vv
\/
ither

w/ : [1] 56

Tuberculosis _ $PPV
S (1] 0.875

E $FOR
LS [1] 0.125

N

XRay f;l']larznming—distance‘
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ASIA: CONSTRAINT-BASED LEARNING

bn.gs <- gs(asia)
plot(bn.gs)

bn.iamb <- iamb(asia)
plot(bn.iamb)
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ASIA: CONSTRAINT-BASED LEARNING

> compareDag(ref = t(dag),

+ test = amat(bn.gs))
STPR

[1] 0.4285714

bn.gs <- gs(asia) $FPR

lot(bn.
plot(bn.gs) [1] 0.01754386

bn.iamb <- iamb(asia)
plot(bn.iamb)

$Accuracy
[1] 0.9218B75

SFDR
Learned Truth (111

$ G-measure”
Asia Smoking
l /

[1] 0.5669467
Tuberculosis| |LungCancer

SPRV
Bronchitis | FESE P

Either SFOR

4‘!’} \¢/\\§g [1] 1

~ Bammind-digt -
XRay| Dyspnea fllm:ung retanee

S Fl-score”
[1] 15.27273
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Thank you for your attention

RIS

WHOA! WE SHOULD GET INSIDE!

Ximg, ITS OKAY! LIGHTNING ONLY KILLS
v, ABOUT 4H5 AMERICANS A YEAR, SO
THE CHANCES OF DYING ARE ONLY

ONE IN 7000 000. LETS GO ON!

o

-

THE ANNUAL DEATH RATE AMONG PEOPLE
WHO KNOW THAT STATISTIC 1S ONE IN SIX. xked.com
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A path from A to B is blocked if it contains a node s.t. either

» the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the
node is in the set C, or

» the arrows meet head-to-head at the node, and neither the node, nor any of its
descendants, are C.

If all paths from A to B are blocked, A is said to be d-separated from B by C.

Theorem (Verma & Pearl, 1988): A is d-separated from B by C if, and only if, the

joint distribution over all variables in the graph satlsfles

Link between statistical statement (conditionally independent) and a graph
propriety (d-separation)
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ASIA: HOW MANY PARENT ARE NEEDED?

res.mlik <- NULL
res.aic <- NULL
res.bic <- NULL
res.mdl <- NULL

for(i in 1:4){
mycache.computed.mle <- buildscorecache.mle(data.df = asia,
data.dists = dist,
max.parents = i,
dry.run = FALSE,
maxit = 1000,
tol = le-11l)

dag <- mostprobable(score.cache = mycache.computed.mle,score = "aic")

res.aic <- rbind(res.aic,fitabn.mle(dag.m = dag,data.df = mycache.computed.mle$data.df,data.dists = dist)$aic)
dag <- mostprobable(score.cache = mycache.computed.mle,score = "bic")

res.bic <- rbind(res.bic,fitabn.mle(dag.m = dag,data.df = mycache.computed.mle$data.df,data.dists = dist)$bic)
dag<-mostprobable(score.cache = mycache.computed.mle,score = “mdl")

res.mdl <- rbind(res.mdl,fitabn.mle(dag.m = dag,data.df = mycache.computed.mle$data.df,data.dists = dist)$mdl)

library(ggplot2)
library(reshape)
scoring <- data.frame(AIC = max(-res.aic)/-res.aic, BIC = max(-res.bic)/-res.bic, MDL = max(-res.mdl)/-res.mdl, 1:4)

scoring.long <- melt(scoring, id.vars="X1.4")

ggplot(data = scoring.long, aes(x=X1.4, y=(value), group=variable, color=variable)) +
geom_line() +
geom_point() +
ggtitle(“Scoring in function of the number of children”, subtitle = NULL) +
xlab(“# of parent per node") +
ylab("% of max score”) +
scale_x _continuous(breaks=c(1,2,3,4,5,6,7))
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VARRANK EYSENCK PERSONALITY INVENTORY

EPI: 3570 observations and 57 variables

40

Structure of EPI:

v Lie scale (9 responses)
Extrovert score

006 01 0.14 —— Neurotic score

Redundancy  Ralevancy Extovert score (24)

\e2
V27
[ V7
V56
- Va1

<

V2o

V19

vaq

Ve

vd
. ‘ V2

V29
Vi34
V14
Va2
V3
Va3
Va6
V16
VRA
V21
V33
W1
V51
v3r
Vi3
V23
v2d
2
V50
V53
VAT
\38
V20
V1
V40
Vo
V26
V18
VAS
VA2
\id
Vg
VR?
V10
V47
V43
V3§

Neurotic score (24)

1

Byn of

ARERLVEEDTERYIND QBN A v O aBMNSERODT AN @O0
N IE O N I N PO NN CC O N T > DT T D
23 353535>> 2333333333 SO I3 IS5
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20
§ Pima Indians Diabetes Database
(F
c . .
768 observations on 9 variables
N1 0 01
Redundancy Ralevancy
glucose
mass
0.036 age
pedigree
insulin
0.044 0.013 0.017 pregnant
pressure
triceps
@ 2 g, gg = T o 4
= © -
8 & ® 55 3 g 2 8
(@)} Q — —
oh Q. Q.



ELEMENT OF GRAPH THEORY

Let A, B and C non intersecting subsets of nodes in a DAG G

A is conditionally independent of B given C if: Al p B|C

P(A,B|C)=P(A|C)P(B| )

P(A,B,C) = P(A | C)P(C | B)P(B)

P(A|C)P(C | B)P(B)
(C)
(B,C)

P(A,B|C) = e
PA|O)P
P(C

)
P(A|C)P(B | C)
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LEARNING BAYESIAN NETWORKS g 2urich™
Constraint-based algorithms
» Inductive Causation (IC): (Verma and Pearl, 1991)

» Provides a framework for learning the structure of Bayesian networks using
conditional independence tests in three steps

» A major problem of the IC algorithm is that the first two steps cannot be
applied to any real-world problem due to computational complexity ...

» PC: first practical application of the IC algorithm (Spirtes et al., 2001)
»  backward selection procedure from the saturated graph

»  Grow-Shrink (GS) (Margaritis, 2003)
» Simple forward selection MB detection approach

» Incremental Association (IAMB): (Tsamardinos et al., 2003)

» two-phase selection scheme based on a forward selection followed by a
backward selection of the MB
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» Constraint-based methods require a Markov and faithfulness assumption

» Conditional independencies in the distribution exactly equal the ones encoded
in the DAG via d-separation

Markov
Al gBIC = ALpB|C
Faithful

» Causal sufficiency: no unmeasured common causes
In a pratical perspective:
» Testing mixture of data?

» Testing assumptions?



ASIA: KNOWN NETWORK

fitabn(dag.m = ~Asia|Tuberculosis+
Tuberculosis |Either +
Either |XRay:Dyspnea +
Smoking |Bronchitis:LungCancer
LungCancer |Either +

Bronchitia|Dyspnea,data.df = asia,data.dists = dist)Smodes

$Asia
Asia|(Intercept) Asia Tuberculosis

-4.811200 1.765763

$6making

Smoking| (Intercept) Smoking LungCancer §Smoking Bronchitis

-1.027065

$Tuberculosis
Tuberculosis (Intercept)
-12.22120

$LungCancer
LungCancer | (Intercept)
-12.07565

SBronchitisa
Bronchitis| (Intercept)
-1.388644

SEither
Either | (Intercept)
-B.656348

$XRay
XRay| (Intercept)
-2.052496

$Dyapnea
Dyspnea| (Intercept)
-0.1201444

2.356988

Either |XRay
8.259773

1.807460

Tuberculosis |Either

10.218213

LungCancer Either

14.18547

Bronchitis|Dyspnea

3.200393

Eithexr Dyspnea
1.53R789

$Asia
Asia intercept Tuberculasis
(1,1 -4.811371 1.766849

$Smoking
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fitabn.mle(dag.m = dag.adj,data.df = asia,data.dists = dist)Scoef

Smoking|intercept LungCancer Bronchitis

(1,] -1.027075 2.357079
$Tuberculosis

Tuberculosis|intercapt REither
[1,] -B.517393 6.516139

SLungCancer
LungCancer | intarcept Either
(1,1 ~8.517393 10.62598

SBronchitis
Bronchitis|intercept Dyspnea
(1,1 ~1.388655 3.200415

SEither
Either|intexrcept XRay Dyspnea
(1,1 -8.665128 8.268402 1.539146

$XRay
XRay intercept
1,1 -2.0525

$Dyspnea
Cyspnea|intercept
1,1 -0.1201443

1.807472
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